Natural Language Processing and Cognitive

Course Code: MSCA 32018

Course Summary: Prerequisite:
MSCA 31008: Data Mining Principles

Extracting actionable insights from unstructured text and designing cognitive applications have become significant areas of application for analytics. Students in this course will learn foundations of natural language processing, including: concept extraction; text summarization and topic modeling; part of speech tagging; named entity recognition; semantic roles and sentiment analysis. For advanced NLP applications, we will focus on feature extraction from unstructured text, including word and paragraph embedding and representing words and paragraphs as vectors. For cognitive analytics section of the course, students will practice designing question answering systems with intent classification, semantic knowledge extraction and reasoning under uncertainty. Students will gain hands-on expertise applying Python for text analysis tasks, as well as practice with multiple IBM Watson services, including: Watson Discovery, Watson Conversation, Watson Natural Language Classification and Watson Natural Language Understanding.